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GEAR DAMAGE DETECTION USING OIL DEBRIS ANALYSIS

Paula J. Dempsey
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ABSTRACT

The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts

gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data

was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur
Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage

progression were also collected from 6 of the experiments with pitting damage. During each test, data
from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data

measured from the oil debris sensor during experiments with damage and with no damage was used to

identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the

oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results
indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting

damage on spur gears.
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INTRODUCTION

One of NASA's current goals, the National Aviation Safety Goal, is to reduce the aircraft accident rate by

a factor of 5 within 10 years, and by a factor of 10 within 25. One of the leading factors in fatal aircraft
accidents is loss of control in flight, which can occur due to flying in severe weather conditions, pilot

error, and vehicle/system failure. Focusing on helicopters system failures, an investigation in 1989 found

that 32 percent of helicopter accidents due to fatigue failures were caused by damaged engine and

transmission components (Astridge (1989)). In more recent statistics, of the world total of 192 turbine

helicopter accidents in 1999, 28 were directly due to mechanical failures with the most common in the

drive train of the gearboxes (Learmont (2000)). A study published in July 1998, in support of the National
Aviation Safety Goal, recommended areas most likely to reduce rotorcraft fatalities in the next ten years.

The study of 1168 fatal and nonfatal accidents, that occurred from 1990 to 1996, found that after human

factors related causes of accidents, the next most frequent cause of accidents were due to various system
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and structural failures (Aviation Safety and Security Program, the Helicopter Accident Analysis Team

(1998)). Loss of power in-flight caused 26 percent of this type of accident and loss of control in-flight

caused 18 percent of this type of accident. The technology area recommended by this study for helicopter

accident reduction was helicopter Health and Usage Monitoring Systems (HUMS) capable of predicting

imminent equipment failure for on-condition maintenance and more advanced systems capable of warning
pilots of impending equipment failures.

Helicopter transmission diagnostics are an important part of a helicopter health monitoring system

because helicopters depend on the power train for propulsion, lift, and flight maneuvering. In order to

predict transmission failures, the diagnostic tools used in the HUMS must provide real-time performance

monitoring of aircraft operating parameters and must demonstrate a high level of reliability to minimize
false alarms. Various diagnostic tools exist for diagnosing damage in helicopter transmissions, the most

common being vibration. Using vibration data collected from gearbox accelerometers, algorithms are

developed to detect when gear damage has occurred (Stewart (1977)); Zakrajsek, Townsend, and Decker

(1993)). Oil debris is also used to identify abnormal wear related conditions of transmissions. Oil debris

monitoring for gearboxes consists mainly of off-line oil analysis, or plug type chip detectors. And,

although not commonly used for gear damage detection, many engines have on-line oil debris sensors for
detecting the failure of rolling element bearings. These on-line, inductance type, sensors count the number

of particles, their approximate size, then calculate an accumulated mass (Hunt (1993)).

The goal of future HUMS is to increase reliability and decrease false alarms. HUMS are not yet capable

of real-time, on-line, health monitoring. Current data collected by HUMS is processed after the flight and
is plagued with high false alarm rates and undetected faults. The current fault detection rate of

commercially available HUMS through vibration analysis is 60 percent. False warning rates average 1 per

hundred flight hours (Stewart (1997)). This is due to a variety of reasons. Vibration based systems require

extensive interpretation by trained diagnosticians. Operational effects, can adversely impact the

performance of vibration diagnostic parameters and result in false alarms (Dempsey and Zakrajsek

(2001)); Campbell, Byington, and Lebold (2000)). Oil debris sensors also require expert analysis of data.

False alarms of oil debris technologies are often caused by non-failure debris. This debris can bridge the

gap of plug type chip detectors. Inductance type oil debris sensors cannot differentiate between fault and

no-fault sourced data (Howard and Reintjes (1999)).

Several companies manufacturer on-line inductance type oil debris sensors that measure debris size and

count particles (Hunt (1993)). New oil debris sensors are also being developed that measure debris shape

in addition to debris size in which the shape is used to classify the failure mechanism (Howard, et al

(1998)). The oil debris sensor used in this analysis was selected for several reasons. The first three reasons

were sensor capabilities, availability and researcher experience with this sensor. Results from preliminary
research indicate the debris mass measured by the oil debris sensor showed a significant increase when

pitting damage began to occur (Dempsey (2000)). This sensor has also been used in aerospace

applications for detecting bearing failures in aerospace turbine engines. From the manufacturers

experience with rolling element bearing failures, an equation was developed to set warning and alarm

threshold limits for damaged bearings based on accumulated mass. Regarding its use in helicopter

transmissions, a modified version of this sensor has been developed and installed in an engine nose

gearbox and is currently being evaluated for an operational AH-64 (Howe and Muir (1998)). Due to

limited access to oil debris data collected by this type of sensor from gear failures, no such equation is

available that defines oil debris threshold limits for damaged gears.

The objective of the work reported herein is to first identify the best feature for detecting gear pitting

damage from a commercially available on-line oil debris sensor. Then, once the feature is defined,
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identify a method to set threshold limits for different levels of damage to gears. The oil debris data

analysis will be performed on gear damage data collected from an oil debris monitor in the NASA Glenn

Spur Gear Fatigue Rig.

TEST PROCEDURE

Experimental data was recorded from tests performed in the Spur Gear Fatigue Test Rig at NASA Glenn

Research Center (Scibbe, Townsend, and Aron (1984)). This rig is capable of loading gears, then running

gears until pitting failure is detected. A sketch of the test rig is shown in Figure 1. Torque is applied by a

hydraulic loading mechanism that twists 1 slave gear relative to its shaft. The power required to drive the

system is only enough to overcome friction losses in the system (Lynwander (1983)). The test gears are

standard spur gears having 28 teeth, 8.89 cm pitch diameter, and 0.64 cm face width. The test gears are

run offset to provide a narrow effective face width to maximize gear contact stress while maintaining an

acceptable bending stress. Offset testing also allows four tests on one pair of gears. Two filters are located

downstream of the oil debris monitor to capture the debris after it is measured by the sensor.
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Oil-seal gas flow ---.

Viewing port

Test-gear
cover --,

x
x
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/

/
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Figure 1.--Spur gear fatigue test rig.
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Figure 2.--Spur gear fatigue rig gearbox.

Fatigue tests were run in a manner that allows damage to be correlated to the oil debris sensor data. For

these tests, run speed was l0 000 rpm and applied torque was 72 and 96 N.m. Prior to collecting test data,

the gears were run-in for 1 hr at a torque of 14 N-m. The data measured during this run-in was stored, then

the oil debris sensor was reset to zero at the start of the loaded test. Test gears were inspected periodically
for damage either manually or using a micro camera connected to a VCR and monitor. The video

inspection did not require gearbox cover removal. When damage was found, the damage was documented

and correlated to the test data based on a reading number. Reading number is equivalent to minutes and

can also be interpreted as mesh cycles equal to reading number times 104. In order to document tooth

damage, reference marks were made on the driver and driven gears during installation to identify tooth 1.

The mating teeth numbers on the driver and driven gears were then numbered from this reference.

Figure 2 identifies the driver and driven gear with the gearbox cover removed.

Data was collected once per minute from oil debris, speed and pressure sensors installed on the test rig

using the program ALBERT, Ames-Lewis Basic Experimentation in Real Time, co-developed by NASA

Glenn and NASA Ames. Oil debris data was collected using a commercially available oil debris sensor

that measures the change in a magnetic field caused by passage of a metal particle where the amplitude of

the sensor output signal is proportional to the particle mass. The sensor measures the number of particles,
their approximate size (125 to 1000/am) and calculates an accumulated mass (Howe and Muir (1998)).

Shaft speed was measured by an optical sensor once per each shaft revolution. Load pressure was

measured using a capacitance pressure transducer.

The principal focus of this research is detection of pitting damage on spur gears. Pitting is a fatigue failure
caused by exceeding the surface fatigue limit of the gear material. Pitting occurs when small pieces of

material break off from the gear surface, producing pits on the contacting surfaces (Townsend (1991)).

Gears are run until pitting occurs on several teeth. Pitting was detected by visual observation through

periodic inspections on 2 of the experiments with damage. Pitting was detected by a video inspection
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system on 6 of the experiments with pitting damage. Two levels of pitting were monitored, initial and

destructive pitting. Initial pitting is defined as pits less than 0.04 cm diameter and cover less than

25 percent of tooth contact area. Destructive pitting is more severe and defined as pits greater than

0.04 cm diameter and cover greater than 25 percent of tooth contact area. If not detected in time,

destructive pitting can lead to a catastrophic transmission failure if the gear teeth crack.

DISCUSSION OF RESULTS

The analysis discussed in this section is based on oil debris data collected during 16 experiments, 8 of

which pitting damage occurred, The oil debris sensor records counts of particles in bins set at particle size

ranges measured in microns. The particle size ranges and average particle size are shown in Table 1. The

average particle size for each bin is used to calculate the cumulative mass of debris for the experiment.

The shape of the average particle is assumed to be a sphere with a density of approximately 7922 kg/m -_.

Bin

1
2
3

4
5
6
7

8

TABLE 1
Oil debris

Bin range, Average,

/am /am

125-175 150
175-225 200
225-275 250

275-325 300
325-375 350
375--425 400
425--475 450

475-525 500

mrticle size ranges
Bin Bin range,

9
10
11

12
13
14
15

16

/am

Average,

/am

525-575 550
575--625 600
625-675 650

675-725 700
725-775 750
775-825
825-900

800
862.5

900-1016 958

TABLE 2

with video inspection
Experiment Experiment Experiment Experiment Experiment [ Experiment

1 2 3 4 5 ] 6
Rdg# Mass, Rdg# Mass, Rdg# Mass, Rdg# Mass, Rdg# Mass, Rdg# Mass,

mt_ mg mg mg m_ mt_
60 1.003 1573 3.285 58 0 64 0 62 0 60 0

120 1.418 i_26_ 150 2.233 1405 4.214 2810 3.192
1581 5.113 2296 16.267 2857 11.889 378 8.297 2566 7.413 2885 6.396

10622 12.533 2444 26.268 3029 14.148 518 9.462 4425 :'10_8|_!i 2957 8.704
_. _5_5! li2_32: 9328 11.692

14430 22.468 2366 13.977 _:!i4_ _:

145121 24.586 3671 17.361 12368 22.851
14688 28.451 4655 23.12
148461 30.686 4863 26.227

15136! 36.108

*Note: Highlighted cells identify reading and mass when destructive pitting was first observed.

Experiments 1 to 6 were performed with the video inspection system installed on the rig. Table 2 lists the

reading numbers when inspection was performed and the measured oil debris mass at this reading. The

highlighted cells for each experiment identify the reading number and the mass measured when

destructive pitting was first observed on one or more teeth. As can be seen from this table, the amount of
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mass varied significantly for each experiment. A representative sample of the images obtained from the

video damage progression system is shown in Figure 3. The damage progression of tooth 6 on the driver

and driven gear for experiment 1 for selected readings is shown in this figure. The damage is only shown

on less than half of the tooth because the test gears are run offset to provide a narrow effective face width

to maximize gear contact stress.

Rdg Rdg Rdg Rdg
60 10622 14369 15136

Driver
gear

Driven
gear

Figure 3.--Damage progression of driver/driven tooth 6 for experiment 1.

TABLE 3

Experiments with visual ins
Experiment Experiment

7 8

Rdg# Mass, Rdg# Mass,
mg mg

13716 3.381 5181 6.012
5314 19.101

)ection
Pitting Damage

Initial
Destructive

Experiments 7 and 8 were performed with visual inspection. Table 3 lists the reading number when

inspection was performed and the measured oil debris mass at this reading. Only initial pitting occurred

during experiment 7. During experiment 8, initial pitting was observed at reading 5181 and destructive

pitting at reading 5314.

No gear damage occurred during experiments 9 to 16. Oil debris mass measured at test completion is

listed in Table 4. At the completion of experiment 10, 5.453 mg of debris was measured, yet no damage
occurred. This is more then the debris measured during experiment 7 (3.381 mg) when initial pitting was

observed. This and observations made from the data collected during experiments when damage occurred

made it obvious that simple linear correlations could not be used to obtain the features for damage levels
from the oil debris data.
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TABLE 4

Oil debris mass at completion
Experiment

9

Rdg# Mass,
mg

29866 2.359

of experiments with no dama _e

Mass,

mg
3.159

10 20452 5.453 0
11 204 0.418 0.125

Experiment Rdg#

13 25259
14 5322
15 21016
16 2144615654 2.27612 0.163

Prior to discussing methods for feature extraction, it may be beneficial for the reader to get a feel for the

amount of debris measured by the oil debris sensor and the amount of damage to one tooth. Applying the

definition of destructive pitting, 25 percent of tooth surface contact area for one tooth for these
experiments is approximately 0.043 cm 2. A 0.04 cm diameter pit, assumed spherical in size is equivalent

to 0.26 mg oil debris mass. This mass is calculated based on the density used by the sensor software to

calculate mass. If 0.04 cm diameter pits densely covered 25 percent of the surface area of 1 tooth, it would

be equivalent to approximately 9 rag. Unfortunately, damage distribution is not always densely distributed

on 25 percent of a single tooth, but is distributed across many making accurate measures of material

removed per tooth extremely difficult.

Several predictive analysis techniques were reviewed to obtain the best feature to predict damage levels

from the oil debris sensor. One technique for detecting wear conditions in gear systems is by applying

statistical distribution methods to particles collected from lubrication systems (Roylance (1989)). In this

reference, mean particle size, variance, kurtosis, and skewness distribution characteristics were calculated
from oil debris data collected off-line. The wear activity was determined by the calculated size

distribution characteristics. In order to apply this data to on-line oil debris data, calculations were made

for each reading number for each bin (Table 1) using the average particle size and the number of particles
for each of the sixteen bins. Mean particle size, relative kurtosis, and relative skewness were calculated

for each reading for 6 of the experiments with pitting damage. It was not possible, however, to extract a
consistent feature that increased in value from the data for all exigeriments. This may be due to the random

nonlinear distribution of the damage progression across all 56 teeth. For this reason a more intelligent

feature extraction system was analyzed and will be discussed in the following paragraphs.

When defining an intelligent feature extraction system, the gear states one plans to predict must be

defined. Due to the overlap of the accumulated mass features, 3 primary states of the gears were

identified: O.K (no gear damage); Inspect (initial pitting); Damage (destructive pitting). The data from

Table 2 was plotted in Figure 4. Each plot is labeled with experiment numbers 1 to 6. The triangles on

each plot identify the inspection reading number. The triangles circled indicate the reading number when

destructive pitting was first observed. The background color indicates the O.K., inspect and damage

states. The overlap between the states is also identified with a different background color. The changes in
state for each color were defined based on data shown in Tables 2 to 4. The minimum and maximum

debris measured during experiments 1 to 6 when destructive pitting was first observed was used to define

the upper limit of the inspect scale and the lower limit of the damage scale. The maximum amount of

debris measured when no damage occurred (experiment 10) was above the minimum amount of debris

measured when initial pitting occurred (experiment 7), This was used as the lower limit of the inspect
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state. The next largest mass measured when no damage occurred (experiment 13) was used as the upper
limit of the O.K. scale.

Fuzzy logic was used to extract an intelligent feature from the accumulated mass measured by the oil

debris sensor. Fuzzy logic was chosen based on the results of several studies to compare the capability of

production rules, fuzzy logic and neural nets. One study found fuzzy logic the most robust when

monitoring transitional failure data on a gearbox (Hall, Garga, and Stover (1999)).Another study

comparing automated reasoning techniques for condition-based maintenance found fuzzy logic more

flexible than standard logic by making allowances for unanticipated behavior (McGonigal (1997)). Fuzzy

logic applies fuzzy set theory to data, where fuzzy set theory is a theory of classes with unsharp

boundaries and the data belongs in a set based on its degree of membership (Zadeh (1992)). The degree of

membership can be any value between 0 and 1.

Defining the fuzzy logic model requires inputs (damage detection features), outputs (state of gear), and

rules. Inputs are the levels of damage, and outputs are the states of the gears. Membership values were

based on the accumulated mass and the amount of damage observed during inspection. Membership

values are defined for the 3 levels of damage: damage low, damage medium, and damage high. Using the

Mean of the Maximum (MOM) fuzzy logic defuzzification method, the oil debris mass measured during

the 6 experiments with pitting damage was input into a simple fuzzy logic model created using

commercially available software (Fuzzy Logic Toolbox (1998)). The output of this model is shown on

Figure 5. Threshold limits for the accumulated mass are identified for future tests in the Spur Gear Fatigue

Test Rig. Results indicate accumulated mass is a good predictor of pitting damage on spur gears and fuzzy

logic is a good technique for setting threshold limits that discriminates between states of pitting wear.
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Figure 5.--Output of fuzzy logic model.

CONCLUSIONS

The purpose of this research was to first verify, when using an inductance type, on-line, oil debris sensor,

that accumulated mass predicts gear pitting damage. Then, using accumulated mass as the damage

feature, identify a method to set threshold limits for damaged gears that discriminates between different

levels of pitting damage. In this process, the membership functions for each feature state were defined

based on level of damage. From this data, and a simple fuzzy logic model, accumulated mass measured by

an oil debris sensor combined with fuzzy logic analysis techniques can be used to predict transmission

health. Applying fuzzy logic incorporates decision making into the diagnostic process that improves fault
detection and decreases false alarms

This approach has several benefits over using the accumulated mass and an arbitrary threshold limit for

determining if damage has occurred. One is that it eliminates the need for an expert diagnostician to

analyze and interpret the data, since the output would be one of 3 states, O.K., Inspect, and Shutdown.

Since benign debris may be introduced into the system, due to periodic inspections, setting the lower limit

to above this debris level will minimize false alarms. In addition to this, a more advanced system can be

designed with logic built-in to minimize these operational effects. Future tests are planned to collect data

from gears with initial pitting to better define the inspect region of the model and the severity of gear

damage. Tests are planned for gears of different sizes to determine if a relationship can be developed
between damage levels and tooth surface contact area, to minimize the need for extensive tests to develop

the membership functions for the threshold levels.
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